If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21y^2-8y-4=0
a = 21; b = -8; c = -4;
Δ = b2-4ac
Δ = -82-4·21·(-4)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-20}{2*21}=\frac{-12}{42} =-2/7 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+20}{2*21}=\frac{28}{42} =2/3 $
| 2z/9-5=8 | | 7t/8-5=2t | | x/7+9=3 | | -2x+87=76-3x | | (4x-+1)(4x-5)=(4x+3)² | | 7t/8-5=t | | x3+x2−49x−49=0 | | (2x-1)^2=(2x-1)(x+3) | | 5=x-30 | | (2x-1)^2(x-3)=0 | | 3x=7((4/9)x+(1/9)) | | 9=3+c | | 6(7x-1)=2(3x+11 | | 4+3x+1=5+3x | | -20+6x=-x-28 | | 2x+37=53 | | 4(5+8d)=84 | | 12(x)^3+24(x)^2=0 | | -x+8+8x=8+5x | | 5/9(x+3/5)+1/6(x-4)=2/3(x+1) | | X+2y/7=4 | | F(3)=2x^2+3x-4 | | 5x-131=55+11x | | 8x+8=x-55 | | 3t/5-2=t | | x-1=6x+8-7x | | -40-3X=x+20 | | 30-4x=78+2x | | 6-x+2=x+8 | | 4z/10+1=-2 | | 4n+3(-7n+4)=97 | | (x/5)=(8/x) |